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Transients and attractors in epidemics
Chris T. Bauch* and David J. D. Earn
Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario L8S 4K1, Canada

Historical records of childhood disease incidence reveal complex dynamics. For measles, a simple model
has indicated that epidemic patterns represent attractors of a nonlinear dynamic system and that tran-
sitions between different attractors are driven by slow changes in birth rates and vaccination levels. The
same analysis can explain the main features of chickenpox dynamics, but fails for rubella and whooping
cough. We show that an additional (perturbative) analysis of the model, together with knowledge of the
population size in question, can account for all the observed incidence patterns by predicting how stochas-
tically sustained transient dynamics should be manifested in these systems.
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1. INTRODUCTION

Understanding the complex incidence patterns of child-
hood diseases during the twentieth century has been a
major goal of mathematical epidemiology (London &
Yorke 1973; Dietz 1975; Schaffer 1985; Anderson & May
1991; Grenfell 1992; Earn et al. 1998, 2000; Rohani et al.
1999). Case notifications going back to the early twentieth
century show a variety of outbreak patterns, including reg-
ular cycles of various lengths and apparently aperiodic
dynamics (Bartlett 1957; Yorke & London 1973; Olsen &
Schaffer 1990; Bolker & Grenfell 1993); moreover, the
temporal epidemic pattern in a given location switches
from one type to another over long time-scales.

Examples of weekly and monthly incidence time-series
for four diseases (measles, chickenpox, rubella and
whooping cough) are shown in figure 1a–d. On time-scales
greater than a few months, patterns are evident. Figure
1e–h shows the power spectral densities (PSDs, see
Appendix A) derived from segments of each of these time-
series (Priestley 1981; Anderson et al. 1984). Peaks in the
PSD identify the most prominent frequencies ( f ) and cor-
respond to interepidemic intervals (T = 1/f ) in the time-
series. There are typically two distinct spectral peaks. The
PSD almost always shows a peak corresponding to a per-
iod that is an integer multiple of 1 year (usually 1 or 2
years); we call this the resonant peak, as opposed to the
non-resonant peak, which can apparently occur at any fre-
quency. For a given disease, the positions of these peaks
vary from place to place and, in a given place, over long
time-scales.

The purpose of this paper is to explain the incidence
patterns of these diseases using a mathematical model
(described in § 2). Identification of the periods of the
attractors of the model (which we term asymptotic
analysis) correctly predicts the resonant PSD peaks but
fails to predict the non-resonant peaks. We show that tran-
sient dynamics are the source of the non-resonant peaks
and that these peaks can be predicted by a perturbation
analysis of the model. Furthermore, we find that the rela-
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tive magnitude of these two types of spectral peak is
determined primarily by the degree of demographic sto-
chasticity.

2. SEIR MODEL

The model is a seasonally forced version of the standard
deterministic compartmental model known as the SEIR
model (Anderson & May 1991). It divides the population
into four compartments (S = susceptible, E = exposed but
not yet infectious, I = infectious, R = recovered and
immune). Rates of change of compartment size are given
by ordinary differential equations:

Ṡ = � � (�I � �)S,

Ė = �IS � (� � �)E,

İ = �E � (� � �)I ,

Ṙ = �I � �R, (2.1)

where � is the birth rate, � is the per capita death rate, �
is the mean transmission rate, 1/� is the mean latent per-
iod and 1/� is the mean infectious period. Seasonally vary-
ing transmission rates are specified according to school-
term dates, with � high when school is in session and low
otherwise (Schenzle 1984; Earn et al. 2000) (see Appendix
B). The time-averaged mean transmission rate is denoted
by ���. The amplitude of oscillation of � (relative to ���)
can be approximated from transmission-rate reconstruc-
tions (Fine & Clarkson 1982; Finkenstadt & Grenfell
2000; see Appendix B).

3. ASYMPTOTIC ANALYSIS

A critical ingredient in the analysis of the model is an
easily derived equivalence between changes in the mean
transmission rate ���, the birth rate � and the proportion
of individuals vaccinated, p (fewer births or more vacci-
nations correspond to lower ���). If the birth rate changes
from � to �� and/or if vaccination is initiated at coverage
level p then the equivalent change in the mean trans-
mission rate is given by (Earn et al. 2000):

��� → ���
��

�
(1 � p). (3.1)
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Figure 1. Examples of incidence time-series (a–d) and PSDs (e–h) for four childhood diseases. (a,e) Measles (New York City,
USA); (b,f ) chickenpox (Manitoba, Canada); (c,g) rubella (Ontario, Canada); and (d,h) whooping cough (London, UK). In
each panel, the green line shows annual susceptible recruitment, �(1� p), where � denotes births normalized by 1955
population size and p denotes the proportion vaccinated (cf. Earn et al. 2000); recruitment is shown displaced forward in time
by the mean age at infection to account for the typical delay between birth and infection (4 years for measles, 7 years for
chickenpox, 11 years for rubella and 4 years for whooping cough). Time-series are divided into sections based on substantial
differences in recruitment rates; the corresponding PSDs are not sensitive to the precise point at which the time-series is
divided (the chickenpox time-series has not been divided because no dramatic change in births occurred during the period
covered by the data). Wavelet analysis (Torrence & Compo 1998; Grenfell et al. 2001), which yields a PSD at each point in
time, reveals similar spectral patterns. See Appendix A for details on the calculation of PSDs.

This equivalence makes it possible to predict major tran-
sitions in epidemic patterns from a bifurcation diagram
showing the asymptotically stable solutions (i.e. the
attractors) of the model as a function of ���. If a single
attractor exists, this analysis predicts a simple cycle that
yields a resonant peak in the PSD. If there are multiple
attractors with densely intermixed basins then demo-
graphic stochasticity is predicted to cause the system to
jump from one basin to another (Schwartz 1985; Earn et
al. 2000). For cities for which birth and vaccination time-
series are available, this asymptotic analysis of the model
correctly predicts transitions in the patterns of measles
epidemics (Earn et al. 2000), including changes in the res-
onant peaks of the PSD for measles incidence (e.g. fig-
ure 1a,e).

Applying this approach to chickenpox, we find that the
model always shows several coexisting attractors. How-
ever, in the presence of noise, switching between attractors
is infrequent and most time is spent in the basin of the
annual attractor (see Appendix C). We can therefore
understand the chickenpox time-series in figure 1b in
terms of a system locked onto the annual attractor for a
long time. Eventually, there might be a transition to a 3-
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year or 4-year cycle, but the timing of this transition is
impossible to predict precisely. (Note that the traditional
unforced SEIR model (Anderson & May 1991) incorrectly
predicts that chickenpox should have an interepidemic
interval of 3–4 years.)

The major features of the incidence patterns of rubella
and whooping cough cannot be explained in terms of
attractors. For both these diseases, the asymptotic analysis
always predicts a single strictly annual cycle and hence a
PSD peak at 1 year. In practice, a dominant non-resonant
peak at a long period (2–6 years) is typically observed for
these diseases (see figure 1c,d,g,h).

Previous work has suggested that this apparent failure
of the model is related to stochasticity (Hethcote 1998;
Rohani et al. 1999). Rohani et al. (1999) have shown that
an event-driven Monte Carlo formulation of the model for
whooping cough does produce a time-series with a non-
annual spectral peak. However, the associated period is
evident in simulations of the deterministic whooping
cough model as trajectories approach the annual attractor
(Keeling et al. 2000; Rohani et al. 2002).

For all the diseases we are examining here, we now
show that the position of the non-resonant PSD peak is
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not only predicted by the deterministic model and
observed because of the presence of noise, but can also be
calculated using a linear perturbation technique.

4. PERTURBATION ANALYSIS

The key new component of our analysis involves the
application of linear perturbation theory to the attractors
of the seasonally forced SEIR model. The solutions that
we must perturb are the attractors, which, at their sim-
plest, are annual cycles. Perturbation analysis of cyclical
solutions of differential equations is a non-trivial problem,
but a standard technique allows us to reduce it to analysis
of fixed points (Kuznetsov 1998). In this way, we obtain
the damping rate rn and the oscillation period Tn of sol-
utions that approach attractors corresponding to n-year
epidemic cycles.

Rather than dealing with the full seasonally forced SEIR
model directly, we derive its associated Poincaré map,
which is equivalent to strobing the full system once a year.
An annual cycle of the full system becomes a fixed point
of the Poincaré map; a biennial cycle becomes a two-point
cycle, etc. Since n-point cycles of the map are fixed points
of the map composed with itself n times, linear analysis of
all cycles reduces to that of fixed points. We do not have
an analytical formula for the Poincaré map, so the linear
analysis must, unfortunately, be carried out numerically;
this is a nuisance, but standard methods (Kuznetsov
1998) yield precise results. For any n-point cycle of the
Poincaré map, the stability analysis yields three eigenval-
ues that determine the transient dynamics near the asso-
ciated periodic cycle of the full system. Because the latent
and infectious periods of childhood diseases are much
shorter than a typical human lifetime, one eigenvalue has
a small modulus, causing rapid collapse of the solutions
onto a centre manifold (Schwartz & Smith 1983). The
remaining two eigenvalues are complex conjugates and
hence have the same modulus |	n| and magnitude of
argument |Arg(	n)|. In the case of a stable cycle, sol-
utions undergo damped oscillations onto the n-point
attractor with a damping rate

rn � ln
1

|	n|
,

and an oscillation period

Tn �
2
n

|Arg(	n)|
.

5. STOCHASTIC EFFECTS

As pointed out by Bartlett in relation to unforced epi-
demic models (Bartlett 1957), demographic stochasticity
can sustain oscillations that would be damped out in the
absence of noise. The same mechanism applies to the sea-
sonally forced model we are examining here. Noise can
prevent oscillations at period Tn from damping out, lead-
ing to a non-resonant peak at period Tn in the PSD.
Although noise inhibits convergence onto the attractor,
rn provides a measure of the sensitivity of the attractor to
noise and the population size N determines the degree of
demographic stochasticity. Note that we call the periods
Tn non-resonant because they are stimulated by demo-
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graphic stochasticity, in contrast to the resonant periods,
which are associated with the attractors themselves (and
resonate with the seasonal forcing period of 1 year).

While the asymptotic analysis predicts the period of the
resonant PSD peak, and the perturbation analysis reveals
the period of the non-resonant PSD peak, neither analysis
determines how large each of these peaks should be. To
explain fully the observed PSDs we must find a way to
predict the relative magnitude of the resonant and non-
resonant peaks. The ratio of peak magnitudes determines
the relative importance of seasonality versus demographic
stochasticity, i.e. the relative importance of asymptotic
cycles versus transient (noise-sustained) effects.

To discover which factors influence the relative magni-
tude of non-resonant and resonant peaks we analysed
simulations of the event-driven Monte Carlo formulation
(Bartlett 1957) of the seasonally forced SEIR model. This
analysis showed that the relative magnitude of the PSD
peaks is sensitive to the mean transmission rate ���, the
amplitude of seasonal forcing � and the population size
N. The ratio of non-resonant to resonant peaks decreases
with increasing ���, increasing � and, as expected, increas-
ing N.

6. COMBINED ANALYSIS

To predict the character of an incidence time-series
(including transitions induced by changes in birth rate and
vaccination levels) from estimates of disease and demo-
graphic parameters, we must carry out a combined analy-
sis involving the three procedures we have discussed in
§§ 3–5 (asymptotic analysis, perturbation analysis and
relative peak-magnitude analysis).

Figure 2 shows an example of this combined analysis
for the case of whooping cough. Each panel shows an
aspect of the dynamics predicted as a function of ���. Fig-
ure 2a shows the bifurcation diagram of the attractors: for
whooping cough there is a simple annual cycle for all
���, so a resonant peak in the PSD at 1 year is always
predicted. For measles (Earn et al. 2000), chickenpox and
rubella, the bifurcation diagram would also display bien-
nial, triennial and other multiennial attractors for certain
ranges of ��� (though, as mentioned in § 3, stochastic
simulations spend most time in the vicinity of the 1-year
and 2-year attractors).

Figure 2b shows the transient period T1 as a function
of ���. T1 predicts the position of the non-resonant PSD
peak. We do not need to consider Tn for n � 2, because
in such cases the transient period is longer than the sec-
tions of the time-series for which birth rates and vaccine
uptake remain approximately constant; hence the transi-
ent period is unobservable in these cases. This is true for
all the diseases we are considering here. (One easily verifi-
able prediction resulting from this is that there should be
no non-resonant peak in the measles time-series when the
system is in the regime with a unique biennial attractor.)
Therefore, even when multiple attractors coexist, T1 is the
only non-resonant period that we expect to appear as a
PSD peak.

Finally, figure 2c shows the ratio of the magnitude of
the non-resonant peak to the magnitude of the resonant
peak as a function of ���, for several population sizes rel-
evant to the whooping cough data we are considering here.
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Figure 2. Three-part ‘transition diagram’ for whooping
cough. Changes in the resonant period are predicted by (a),
which shows the attractors that are present as a function of
��� (for whooping cough an annual cycle is predicted for all
���). Likewise, changes in the transient (non-resonant)
period T1 are predicted by (b), and changes in the ratio of
the magnitudes of non-resonant to resonant peaks are
predicted by (c), which shows results from stochastic
simulations (circles: N = 1 million; squares: N = 4 million;
diamonds: N = 8 million). The disease parameters are mean
latent period 1/� = 14 days and mean infectious period
1/� = 8 days. The seasonal amplitude is � = 0.15.

The damping rate r1, which controls the rate of conver-
gence to the attractor, increases monotonically with ���,
hence we can display the results of the perturbation analy-
sis as a function of ���, just as we can with the asymptotic
analysis; Earn et al. (2000). Furthermore, the amplitude
� is a fixed parameter for a given disease in a given place
and does not vary significantly even between places (see
electronic Appendix A; available on The Royal Society’s
Publications Web site). Consequently, for predicting the
relative magnitude we need worry only about changes in
the effective ��� resulting from birth rate and vaccination
changes and differences in population size N between dif-
ferent places.

Three-part ‘transition diagrams’ such as figure 2 allow
us to predict the character of an infectious disease time-
series and how it will change in response to changes in
birth rate or vaccination level. For a given place, an esti-
mate of the basic reproductive ratio R0 (Anderson & May
1991) at a given time allows us to compute ��� at that
time and hence to predict the PSD peak locations from
figure 2a,b and their relative magnitude from figure 2c. If
the birth rate changes from � to �� and vaccination of a
proportion p of infants is initiated then the predicted tran-
sition in PSD peaks and relative magnitude can be
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Figure 3. The correlation between predicted and observed
periods of non-resonant PSD peaks is positive and highly
significant (r2 = 0.83, t = 8.69, d.f. = 16, p  10�7). If the
observations agreed perfectly with our predictions (as they
do for resonant PSD peaks) then the corresponding points
would lie precisely on the line of slope 1 shown on the
graph (the least-squares linear fit of the data has a slope of
1.02 and an intercept of �0.11). Circles, measles; triangles,
chickenpox; squares, rubella; crosses, whooping cough. See
electronic Appendix A for parameter estimates and for the
results in tabular format.

determined from these diagrams by the equivalence given
in equation (3.1).

7. RESULTS AND DISCUSSION

We applied this combined analysis to all childhood dis-
ease time-series for which disease incidence, birth rates
and vaccine uptake data were available to us. In the
asymptotic analysis (as in figure 2a), the resonant PSD
peak in each time-series is perfectly predicted (see table 1
of electronic Appendix A). In the perturbation analysis (as
in figure 2b), the observed positions of the non-resonant
peaks are strongly correlated with those predicted (see fig-
ure 3). These results vindicate the seasonally forced SEIR
model for all four diseases. (They also supplement pre-
vious work on measles (Earn et al. 2000), since both non-
resonant and resonant peaks are predicted; it so happens
that the main features of measles dynamics are usually
described by resonant peaks in the PSD, which is why
perturbation analysis was not required to predict tran-
sitions in the major features.)

We are not able to predict the precise ratio of the magni-
tudes of peaks in the real incidence data, and with good
reason. Our stochastic simulations show that spectra of
short segments (e.g. 50 years) of a given disease time-
series can have very different ratios of peak magnitudes
(e.g. varying from 0.5 to 2 in the case of whooping cough).
Nevertheless, the directions of change in the peak ratio as
��� or N change can be robustly predicted: diseases with
higher effective R0 and greater seasonal forcing (�) will
have more power in the resonant PSD peak; moreover, for
a given disease, smaller populations (which yield greater
demographic stochasticity) will have more power in the
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non-resonant peak. These general relationships are seen,
for example, in whooping cough power spectra for British
cities in the twentieth century before, and after, mass vac-
cination was initiated (Rohani et al. 2000) and in the
rubella and chickenpox data that we have analysed here
(see figures 1b,c, f,g and 3, and table 1 of electronic appen-
dix A). Furthermore, it has previously been noted that
smaller towns typically exhibit multiennial outbreaks of
chickenpox whereas large cities always exhibit annual out-
breaks (Olsen et al. 1988). Diseases such as measles and
chickenpox, with moderate to large values of R0 and �,
typically exhibit large resonant power, whereas diseases
such as whooping cough (which has a small �) and rubella
(which has a small R0) exhibit significant non-resonant
power.

This success suggests that there is every reason to expect
that analyses like these will be extremely useful for pre-
dicting patterns of epidemics of other diseases and, more
generally, the population dynamics of other ecological sys-
tems.

Recent work has shown that transient dynamics may
dominate ecological dynamics and that restricting atten-
tion to attractors of models may miss the most important
dynamic features of ecological systems (Hastings & Hig-
gins 1994). Our analysis supports this view, but at the
same time highlights the importance of studying the
attractors, since a stability analysis of those states can
reveal the nature of observed noise-sustained transients in
real ecological systems.

The authors thank David Rand and Nigel Burroughs for help-
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Johnstone and Pej Rohani for comments on an early version
of the manuscript. D.J.D.E. is supported by the Natural
Sciences and Engineering Research Council of Canada
(NSERC), the Canadian Institutes for Health Research
(CIHR), the Canada Foundation for Innovation (CFI) and an
Ontario Premier’s Research Excellence Award. Computer
simulations were performed on Sharcnet (www.sharcnet.ca).

APPENDIX A: POWER SPECTRAL DENSITY
CALCULATION

The PSD is the Fourier transform of the autocovariance
function of the time-series (Priestley 1981; Anderson et al.
1984). Before computation of the PSD the data were
trend-corrected and tapered with a double cosine bell
(Priestley 1981). The autocovariance function was
smoothed with a Tukey window (Priestley 1981) to
reduce the variance in the PSD, which facilitates location
of the PSD peaks. The width of the Tukey window was
chosen so that the resulting bandwidth was the same
(0.35) for both weekly and monthly incidence time-series.

APPENDIX B: SEASONAL FORCING

We introduce seasonal variation in contact rates into the
SEIR model (equation (2.1)) by replacing the constant
parameter � with a time-varying function �(t) that is high
on days when school is in session and low otherwise:

�(t) = ��H on school days,

�L on non-school days.
(B 1)

If the proportion of days in school is s then the time-
averaged mean transmission rate is:

Proc. R. Soc. Lond. B (2003)

��� = s�H � (1�s)�L (B 2)

and we define the amplitude of seasonality to be:

� =
1
2��H � �L

��� �. (B 3)

In terms of ��� and � we can write the transmission rate as:

�(t) = �[(1 � 2(1 � s)�]��� on school days,

[1 � 2s�]��� on non-school days.
(B 4)

Note that, since �(t) � 0, it is clear from equation (B 4)
that the range over which the seasonal amplitude � can
be varied is

0 � � �
1
2s

. (B 5)

At the maximum amplitude �L = 0, i.e. �(t) = 0 on non-
school days.

As a parameter of the model, the amplitude of seasonal-
ity � is unique in that it must be estimated from the inci-
dence time-series. All other parameters, including ���, are
estimated independently of the incidence time-series. We
used a standard method (Fine & Clarkson 1982) to recon-
struct the seasonally varying transmission rate from the
incidence record (we call this reconstructed transmission
rate �rec(t)), and then estimated � by insisting that the area
bounded by the imposed seasonality function (about its
mean) is identical to the area bounded by the recon-
structed seasonality function (about its mean). More pre-
cisely, we set

�1

0 |�rec(t)
��rec�

� 1|dt = �1

0 |�(t)
���

� 1|dt, (B 6)

where �(t) is given by equation (B 4), and ��rec� denotes
the time average of �rec(t). Solving equation (B 6) for �
yields

� =
1

4(s � s2)�1

0 |�rec(t)
��rec�

� 1|dt. (B 7)

See table 3 in electronic Appendix A for the resulting esti-
mates of �. This method of estimating the seasonal ampli-
tude is justified by the fact that the dynamic structure of
the model (i.e. its bifurcation diagram) is almost identical
when the seasonal forcing function is transformed keeping
the total area it bounds constant (D. J. D. Earn and
C. T. Bauch, unpublished data).

Simulations of the stochastic formulation of the model
show that the estimate of � given by equation (B 7) is not
sensitive to the degree of demographic stochasticity (i.e.
population size N) or to the proportion of the population
that is vaccinated ( p). Thus, there is no reason to segment
the time-series when using this technique to estimate the
seasonal amplitude. Accordingly, the estimates of � given
in electronic Appendix A were obtained by applying equ-
ation (B 7) to the longest weekly time-series available for
each location.

APPENDIX C: SWITCHING BETWEEN ATTRACTORS

The stochastic simulations reveal how demographic
stochasticity causes switching between the basins of differ-
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ent attractors. For chickenpox, multiple attractors are
always present. For measles, multiple attractors are
present when transmission rates are low (so the effective
R0 � 15; for example, New York City before the Second
World War). In both cases, jumps between basins typically
occur on time-scales much longer than the empirical time-
series (e.g. less often than once per century), and the
stochastic simulations spend almost all of their time in the
basin of the annual attractor; hence a unique resonant
peak at 1 year should usually occur in these cases.
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